Finding the matrix hyperbolic sine function using Taylor series.
Here’s an example of a Java program that calculates the matrix hyperbolic sine function using the Taylor series approximation:
import java.util.Arrays; public class MatrixHyperbolicSine { // Function to calculate the matrix hyperbolic sine public static double[][] calculateHyperbolicSine(double[][] matrix, int iterations) { int rows = matrix.length; int cols = matrix[0].length; double[][] result = new double[rows][cols]; // Iterate over each element in the matrix for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { double currentElement = matrix[i][j]; double sum = 0.0; // Compute the Taylor series approximation for (int k = 0; k < iterations; k++) { int sign = (k % 2 == 0) ? 1 : -1; double power = 2 * k + 1; double term = Math.pow(currentElement, power) / factorial(power); sum += sign * term; } result[i][j] = sum; } } return result; } // Function to calculate the factorial of a number public static double factorial(double n) { if (n == 0 || n == 1) return 1; double result = 1; for (double i = 2; i <= n; i++) result *= i; return result; } public static void main(String[] args) { double[][] matrix = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0} }; int iterations = 10; double[][] result = calculateHyperbolicSine(matrix, iterations); // Print the resulting matrix for (double[] row : result) { System.out.println(Arrays.toString(row)); } } }
In this example, the `calculateHyperbolicSine` method takes a matrix and the number of iterations as input. It then applies the Taylor series approximation for the hyperbolic sine function to each element in the matrix. The `factorial` method calculates the factorial of a given number.
In the `main` method, we define a sample matrix and the number of iterations to perform. We then call the `calculateHyperbolicSine` method to obtain the result, which is printed to the console.
No comments yet! You be the first to comment.