Finding the matrix rank using Hessenberg decomposition
Here’s a Java program that finds the rank of a matrix using the Hessenberg decomposition:
import java.util.Arrays; public class MatrixRankHessenberg { // Helper function to perform Hessenberg decomposition private static void hessenbergDecomposition(double[][] matrix, double[][] hessenberg) { int n = matrix.length; double[] ort = new double[n]; for (int k = 1; k < n - 1; k++) { double h = 0.0; for (int i = k + 1; i < n; i++) { h += matrix[i][k - 1] * matrix[i][k - 1]; } if (h != 0.0) { double f = matrix[k + 1][k - 1]; double g = Math.sqrt(h); if (f >= 0) { g = -g; } h -= f * g; matrix[k + 1][k - 1] = f - g; for (int i = k + 1; i < n; i++) { ort[i] = matrix[i][k - 1] / h; } for (int j = k + 1; j < n; j++) { double sum = 0.0; for (int i = k + 1; i < n; i++) { sum += matrix[i][j] * ort[i]; } for (int i = k + 1; i < n; i++) { matrix[i][j] -= sum * ort[i]; } } for (int i = 0; i < n; i++) { double sum = 0.0; for (int j = k + 1; j < n; j++) { sum += matrix[i][j] * ort[j]; } for (int j = k + 1; j < n; j++) { matrix[i][j] -= sum * ort[j]; } } } } // Copy the upper triangular part of the matrix to the hessenberg matrix for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { hessenberg[i][j] = (i <= j) ? matrix[i][j] : 0.0; } } } // Helper function to count the number of non-zero rows private static int countNonZeroRows(double[][] matrix) { int count = 0; for (double[] row : matrix) { boolean isZeroRow = Arrays.stream(row).allMatch(value -> value == 0.0); if (!isZeroRow) { count++; } } return count; } // Function to find the rank of a matrix using Hessenberg decomposition public static int findMatrixRank(double[][] matrix) { int n = matrix.length; double[][] hessenberg = new double[n][n]; // Perform Hessenberg decomposition hessenbergDecomposition(matrix, hessenberg); // Count the number of non-zero rows in the Hessenberg matrix int rank = countNonZeroRows(hessenberg); return rank; } // Test the program public static void main(String[] args) { // Example matrix double [][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; int rank = findMatrixRank(matrix); System.out.println("Matrix rank: " + rank); } }
In this program, the `hessenbergDecomposition` function performs the Hessenberg decomposition of the input matrix, and the `countNonZeroRows` function counts the number of non-zero rows in a matrix. The `findMatrixRank` function combines these two functions to find the rank of a matrix. In the `main` function, we provide an example matrix and print its rank. You can modify the `matrix` variable to test the program with different matrices.
No comments yet! You be the first to comment.