Finding the bidiagonalization of a matrix.
Here’s an example of a Java program that finds the bidiagonalization of a given matrix:
import java.util.Arrays; public class Bidiagonalization { public static void main(String[] args) { double[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; int m = matrix.length; int n = matrix[0].length; double[][] bidiagonalMatrix = new double[m][n]; // Perform bidiagonalization for (int i = 0; i < n; i++) { double[] column = getColumn(matrix, i); double norm = calculateNorm(column); if (norm != 0) { bidiagonalMatrix[0][i] = norm; double[] scaledColumn = scaleColumn(column, 1.0 / norm); bidiagonalMatrix[1][i] = dotProduct(scaledColumn, getColumn(matrix, i + 1)); // Update the matrix by subtracting the projection matrix = subtractProjection(matrix, scaledColumn, i + 1); } } // Print the bidiagonal matrix for (double[] row : bidiagonalMatrix) { System.out.println(Arrays.toString(row)); } } // Get a column from the matrix private static double[] getColumn(double[][] matrix, int colIndex) { int m = matrix.length; double[] column = new double[m]; for (int i = 0; i < m; i++) { column[i] = matrix[i][colIndex]; } return column; } // Calculate the Euclidean norm of a vector private static double calculateNorm(double[] vector) { double norm = 0; for (double value : vector) { norm += value * value; } return Math.sqrt(norm); } // Scale a column by a scalar value private static double[] scaleColumn(double[] column, double scalar) { int m = column.length; double[] scaledColumn = new double[m]; for (int i = 0; i < m; i++) { scaledColumn[i] = column[i] * scalar; } return scaledColumn; } // Calculate the dot product of two vectors private static double dotProduct(double[] vector1, double[] vector2) { int m = vector1.length; double dotProduct = 0; for (int i = 0; i < m; i++) { dotProduct += vector1[i] * vector2[i]; } return dotProduct; } // Subtract the projection of a vector onto another vector private static double[][] subtractProjection(double[][] matrix, double[] column, int colIndex) { int m = matrix.length; int n = matrix[0].length; double[][] updatedMatrix = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (j == colIndex) { updatedMatrix[i][j] = matrix[i][j]; } else { updatedMatrix[i][j] = matrix[i][j] - column[i] * matrix[i][colIndex]; } } } return updatedMatrix; } }
In this program, the `main` method takes a sample matrix and performs the bidiagonalization algorithm. The resulting bidiagonal matrix is then printed. The algorithm calculates the bidiagonalization by iterating
over the columns of the matrix, calculating the norm of each column, and finding the projection onto the next column. The matrix is then updated by subtracting the projection. Finally, the resulting bidiagonal matrix is printed to the console.
No comments yet! You be the first to comment.