Finding the matrix condition number using Schur decomposition.
Here’s an example program in Java that uses Schur decomposition to find the condition number of a matrix:
import org.apache.commons.math3.linear.Array2DRowRealMatrix; import org.apache.commons.math3.linear.DecompositionSolver; import org.apache.commons.math3.linear.EigenDecomposition; import org.apache.commons.math3.linear.MatrixUtils; public class MatrixConditionNumber { public static void main(String[] args) { // Define your matrix double[][] matrixData = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0} }; Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixData); // Compute Schur decomposition EigenDecomposition decomposition = new EigenDecomposition(matrix); Array2DRowRealMatrix t = new Array2DRowRealMatrix(decomposition.getT().getData()); // Compute the inverse of T matrix Array2DRowRealMatrix inverseT = MatrixUtils.inverse(t); // Compute the condition number double conditionNumber = t.getNorm() * inverseT.getNorm(); System.out.println("Condition Number: " + conditionNumber); } }
Make sure you have the Apache Commons Math library (`org.apache.commons.math3`) added to your project dependencies. This library provides the necessary classes for matrix operations and decompositions.
In the code, you first define your matrix using a 2D array. Then, you compute the Schur decomposition of the matrix using the `EigenDecomposition` class from Apache Commons Math. Next, you extract the upper triangular matrix `T` from the decomposition and compute its inverse. Finally, you calculate the condition number as the product of the norms of `T` and its inverse.
Remember to adjust the matrix dimensions and data according to your specific requirements.