Finding the matrix condition number using SVD
Here’s a Java program that uses Singular Value Decomposition (SVD) to calculate the condition number of a matrix:
import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.linear.SingularValueDecomposition; public class MatrixConditionNumber { public static void main(String[] args) { // Define the matrix double[][] matrixData = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0} }; // Create a RealMatrix object org.apache.commons.math3.linear.RealMatrix matrix = MatrixUtils.createRealMatrix(matrixData); // Perform singular value decomposition SingularValueDecomposition svd = new SingularValueDecomposition(matrix); // Get the singular values double[] singularValues = svd.getSingularValues(); // Find the maximum and minimum singular values double maxSingularValue = singularValues[0]; double minSingularValue = singularValues[singularValues.length - 1]; // Calculate the condition number double conditionNumber = maxSingularValue / minSingularValue; // Print the condition number System.out.println("Condition Number: " + conditionNumber); } }
To run this program, you’ll need to have the Apache Commons Math library added to your project. You can download the library from the Apache Commons Math website and add it to your project’s dependencies.
This program creates a 3×3 matrix and performs singular value decomposition using the `SingularValueDecomposition` class from the Apache Commons Math library. It then retrieves the singular values and calculates the condition number by dividing the maximum singular value by the minimum singular value. Finally, it prints the condition number to the console.
No comments yet! You be the first to comment.