Finding the matrix determinant using Bidiagonalization.
Here’s a Java program that calculates the determinant of a matrix using bidiagonalization:
public class BidiagonalizationDeterminant { public static void main(String[] args) { double[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; double determinant = calculateDeterminant(matrix); System.out.println("Determinant: " + determinant); } public static double calculateDeterminant(double[][] matrix) { int n = matrix.length; double[][] bidiagonal = bidiagonalize(matrix); double determinant = 1.0; for (int i = 0; i < n; i++) { determinant *= bidiagonal[i][i]; } return determinant; } public static double[][] bidiagonalize(double[][] matrix) { int n = matrix.length; double[][] bidiagonal = new double[n][n]; double[] u = new double[n]; double[] v = new double[n]; for (int k = 0; k < n - 1; k++) { double alpha = 0.0; double beta = 0.0; for (int i = k; i < n; i++) { alpha += matrix[i][k] * matrix[i][k]; } alpha = Math.sqrt(alpha); if (matrix[k][k] < 0) { alpha = -alpha; } if (alpha != 0.0) { for (int i = k; i < n; i++) { u[i] = matrix[i][k]; } u[k] += alpha; double normU = 0.0; for (int i = k; i < n; i++) { normU += u[i] * u[i]; } normU = Math.sqrt(normU); for (int i = k; i < n; i++) { u[i] /= normU; } for (int j = k; j < n; j++) { beta = 0.0; for (int i = k; i < n; i++) { beta += matrix[i][j] * u[i]; } for (int i = k; i < n; i++) { v[i] = matrix[i][j] - beta * u[i]; } for (int i = k; i < n; i++) { matrix[i][j] = v[i]; } } } if (k < n - 2) { alpha = 0.0; for (int j = k + 1; j < n; j++) { alpha += matrix[k][j] * matrix[k][j]; } alpha = Math.sqrt(alpha); if (matrix[k][k + 1] < 0) { alpha = -alpha; } if (alpha != 0.0) { for (int j = k + 1; j < n; j++) { u[j] = matrix[k][j]; } u[k + 1] += alpha; double normU = 0.0; for (int j = k + 1; j < n; j++) { normU += u[j] * u[j]; } normU = Math.sqrt(normU); for (int j = k + 1; j < n; j++) { u[j] /= normU; } for (int i = k; i < n; i++) { beta = 0.0; for (int j = k + 1; j < n; j++) { beta += matrix[i][j] * u[j]; } for (int j = k + 1; j < n; j++) { v[j] = matrix[i][j] - beta * u[j]; } for (int j = k + 1; j < n; j++) { matrix[i][j] = v[j]; } } } } for (int i = 0; i < n; i++) { bidiagonal[i][k] = matrix[i][k]; bidiagonal[k][i] = matrix[k][i]; } } bidiagonal[n - 1][n - 1] = matrix[n - 1][n - 1]; return bidiagonal; } }
In this program, the `calculateDeterminant` method takes a matrix as input and returns its determinant using the bidiagonalization technique. The `bidiagonalize` method performs the bidiagonalization process, transforming the input matrix into a bidiagonal matrix. Finally, the determinant is calculated by multiplying the diagonal elements of the bidiagonal matrix.
You can modify the `matrix` variable in the `main` method with your own matrix values. The program will output the determinant of the matrix.
No comments yet! You be the first to comment.