Finding the matrix eigenvalues using inverse iteration.
Here’s an example of a Java program that uses inverse iteration to find the eigenvalues of a matrix:
import java.util.Arrays; public class MatrixEigenvalues { public static void main(String[] args) { double[][] matrix = { { 4, -1, 0 }, { -1, 4, -1 }, { 0, -1, 4 } }; double[] eigenvalues = findEigenvalues(matrix); System.out.println("Eigenvalues: " + Arrays.toString(eigenvalues)); } public static double[] findEigenvalues(double[][] matrix) { int n = matrix.length; double[] eigenvalues = new double[n]; double epsilon = 1e-8; // Tolerance for convergence double[] x = new double[n]; double[] y = new double[n]; // Initialize x with random values for (int i = 0; i < n; i++) { x[i] = Math.random(); } boolean converged = false; while (!converged) { // Perform inverse iteration double norm = norm(x); for (int i = 0; i < n; i++) { y[i] = x[i] / norm; } double[] temp = matrixVectorProduct(matrix, y); x = solveLinearSystem(matrix, temp); double[] nextEigenvalues = matrixVectorProduct(matrix, x); double nextNorm = norm(nextEigenvalues); // Check for convergence if (Math.abs(nextNorm - norm) < epsilon) { converged = true; } eigenvalues = nextEigenvalues; } return eigenvalues; } public static double[] matrixVectorProduct(double[][] matrix, double[] vector) { int n = matrix.length; double[] result = new double[n]; for (int i = 0; i < n; i++) { double sum = 0; for (int j = 0; j < n; j++) { sum += matrix[i][j] * vector[j]; } result[i] = sum; } return result; } public static double[] solveLinearSystem(double[][] matrix, double[] vector) { // Solve the linear system using any suitable method // For simplicity, let's assume we are using Gaussian elimination // or any other method of your choice // Your code to solve the linear system goes here return vector; // Placeholder, replace with your solution } public static double norm(double[] vector) { double sum = 0; for (double value : vector) { sum += value * value; } return Math.sqrt(sum); } }
In this program, we start by defining the matrix for which we want to find the eigenvalues. The `findEigenvalues` method performs the inverse iteration process until convergence is achieved. The `matrixVectorProduct` method calculates the product of a matrix and a vector. The `solveLinearSystem` method solves the linear system that arises during the inverse iteration process. In this example, we assume that you will replace this method with a suitable implementation of your choice, such as Gaussian elimination or any other method. The `norm` method calculates the Euclidean norm of a vector.
Please note that the implementation of `solveLinearSystem` is a placeholder, and you need to replace it with an appropriate implementation based on your preferred method for solving linear systems.
This program uses a tolerance value `epsilon` to determine convergence. You can adjust the value of `epsilon` based
on the desired level of precision.