Finding the matrix inverse hyperbolic sine.
Here’s an example of a Java program that calculates the matrix inverse hyperbolic sine for a given matrix:
import java.util.Arrays; public class MatrixInverseHyperbolicSine { public static void main(String[] args) { // Example matrix double[][] matrix = { {1.0, 2.0}, {3.0, 4.0} }; // Calculate matrix inverse hyperbolic sine double[][] result = calculateMatrixInverseHyperbolicSine(matrix); // Print the result for (double[] row : result) { System.out.println(Arrays.toString(row)); } } public static double[][] calculateMatrixInverseHyperbolicSine(double[][] matrix) { int rows = matrix.length; int cols = matrix[0].length; double[][] result = new double[rows][cols]; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { result[i][j] = Math.log(matrix[i][j] + Math.sqrt(matrix[i][j] * matrix[i][j] + 1.0)); } } return result; } }
In this program, we have a method `calculateMatrixInverseHyperbolicSine` that takes a matrix as input and returns the matrix inverse hyperbolic sine. The formula used to calculate the inverse hyperbolic sine for each element of the matrix is `asinh(x) = ln(x + sqrt(x^2 + 1))`.
In the `main` method, we provide an example matrix and call the `calculateMatrixInverseHyperbolicSine` method to obtain the result. Finally, we print the resulting matrix.
Note that this program assumes that the input matrix is square (i.e., the number of rows is equal to the number of columns).
No comments yet! You be the first to comment.