Finding the matrix Moore-Penrose inverse using SVD.
Here’s a Java code snippet that demonstrates how to find the Moore-Penrose inverse of a matrix using Singular Value Decomposition (SVD):
import Jama.Matrix; import Jama.SingularValueDecomposition; public class MoorePenroseInverseExample { public static void main(String[] args) { // Example matrix double[][] data = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // Create the matrix object Matrix matrix = new Matrix(data); // Compute SVD SingularValueDecomposition svd = matrix.svd(); // Get the singular values Matrix s = svd.getS(); // Compute the threshold value for pseudo-inverse double threshold = 1e-10 * Math.max(matrix.getRowDimension(), matrix.getColumnDimension()) * s.get(0, 0); // Compute the Moore-Penrose inverse Matrix inverse = computeMoorePenroseInverse(svd, threshold); // Print the inverse matrix inverse.print(5, 4); } private static Matrix computeMoorePenroseInverse(SingularValueDecomposition svd, double threshold) { Matrix s = svd.getS(); Matrix u = svd.getU(); Matrix v = svd.getV(); int rank = 0; double[] singularValues = s.getColumnPackedCopy(); for (double singularValue : singularValues) { if (singularValue > threshold) { rank++; } } Matrix sPlus = new Matrix(s.getRowDimension(), s.getColumnDimension()); for (int i = 0; i < rank; i++) { double singularValue = singularValues[i]; sPlus.set(i, i, 1.0 / singularValue); } Matrix uSub = u.getMatrix(0, u.getRowDimension() - 1, 0, rank - 1); Matrix vSub = v.getMatrix(0, v.getRowDimension() - 1, 0, rank - 1); return vSub.times(sPlus).times(uSub.transpose()); } }
In this code, we use the Jama library to perform the SVD and compute the Moore-Penrose inverse. The `computeMoorePenroseInverse` method takes the SVD decomposition, the threshold value, and returns the Moore-Penrose inverse matrix.
Note: Make sure you have the Jama library added to your project’s dependencies in order to run this code successfully.
No comments yet! You be the first to comment.