Finding the matrix rank using Cholesky decomposition.
Here’s an example of a Java program that finds the rank of a matrix using Cholesky decomposition:
import java.util.Arrays; public class MatrixRankUsingCholesky { public static int getRank(double[][] matrix) { int rows = matrix.length; int cols = matrix[0].length; int rank = Math.min(rows, cols); double[][] cholesky = new double[rows][cols]; for (int i = 0; i < rows; i++) { Arrays.fill(cholesky[i], 0.0); } for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { double sum = matrix[r][c]; for (int j = 0; j < c; j++) { sum -= cholesky[c][j] * cholesky[r][j]; } if (r == c) { cholesky[r][c] = Math.sqrt(sum); } else if (c < r) { cholesky[r][c] = sum / cholesky[c][c]; } else { cholesky[r][c] = 0.0; } } } int rankCount = 0; for (int i = 0; i < rank; i++) { if (cholesky[i][i] > 0.0) { rankCount++; } } return rankCount; } public static void main(String[] args) { double[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; int rank = getRank(matrix); System.out.println("Matrix Rank: " + rank); } }
In this program, the `getRank` method takes a matrix as input and returns its rank using the Cholesky decomposition technique. The `main` method provides an example usage of the program by creating a sample matrix and printing its rank. You can modify the matrix values in the `main` method to test with different matrices.
No comments yet! You be the first to comment.