Finding the matrix rank using LU decomposition.
Here’s a Java program that uses LU decomposition to find the rank of a matrix:
import java.util.Arrays; public class MatrixRankLU { public static void main(String[] args) { double[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; int rank = findRank(matrix); System.out.println("Rank of the matrix: " + rank); } public static int findRank(double[][] matrix) { int rowCount = matrix.length; int colCount = matrix[0].length; int rank = Math.min(rowCount, colCount); for (int i = 0; i < rank; i++) { if (matrix[i][i] != 0) { // Perform LU decomposition for (int j = i + 1; j < rowCount; j++) { double factor = matrix[j][i] / matrix[i][i]; for (int k = i; k < colCount; k++) { matrix[j][k] -= factor * matrix[i][k]; } } } else { boolean reduced = false; // Swap rows to get a non-zero pivot for (int j = i + 1; j < rowCount; j++) { if (matrix[j][i] != 0) { double[] temp = matrix[i]; matrix[i] = matrix[j]; matrix[j] = temp; reduced = true; break; } } if (!reduced) { rank--; for (int j = i; j < rowCount - 1; j++) { matrix[j] = matrix[j + 1]; } } i--; } } return rank; } }
This program demonstrates how to find the rank of a matrix using LU decomposition. The `findRank` method takes a 2D array representing the matrix as input and returns its rank as an integer.
In the `main` method, we create a sample matrix and call the `findRank` method to compute its rank. Finally, the program prints the rank to the console.
Note that this implementation assumes that the input matrix is a rectangular matrix with non-zero dimensions. If you plan to use it with irregular or zero-sized matrices, additional checks and error handling should be added.
No comments yet! You be the first to comment.