Finding the matrix rank using QR decomposition
Here’s an example program in Java that uses QR decomposition to find the rank of a matrix:
import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.linear.QRDecomposition; import org.apache.commons.math3.linear.RealMatrix; public class MatrixRankQRDecomposition { public static void main(String[] args) { double[][] matrixData = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; RealMatrix matrix = MatrixUtils.createRealMatrix(matrixData); QRDecomposition qrDecomposition = new QRDecomposition(matrix); RealMatrix rMatrix = qrDecomposition.getR(); int rank = getMatrixRank(rMatrix); System.out.println("Matrix Rank: " + rank); } private static int getMatrixRank(RealMatrix matrix) { double[] singularValues = matrix.getSingularValues(); int rank = 0; for (double singularValue : singularValues) { if (Math.abs(singularValue) > 1e-10) { rank++; } } return rank; } }
In this program, we are using the Apache Commons Math library, specifically the `QRDecomposition` class, to perform the QR decomposition of the matrix. The `QRDecomposition` class provides the upper triangular matrix `R` as a result. We then calculate the rank of the matrix by counting the number of non-zero singular values in the `R` matrix.
Make sure you have the Apache Commons Math library added to your project dependencies in order to run this program successfully.
No comments yet! You be the first to comment.