Finding the matrix rank using Schur decomposition.
Here’s a Java program that uses Schur decomposition to find the rank of a matrix:
import Jama.EigenvalueDecomposition; import Jama.Matrix; public class MatrixRankSchurDecomposition { public static void main(String[] args) { // Example matrix double[][] matrixData = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; Matrix matrix = new Matrix(matrixData); int rank = calculateMatrixRank(matrix); System.out.println("Matrix Rank: " + rank); } public static int calculateMatrixRank(Matrix matrix) { EigenvalueDecomposition decomposition = matrix.eig(); Matrix diagonalMatrix = decomposition.getD(); int rank = 0; for (int i = 0; i < diagonalMatrix.getRowDimension(); i++) { double eigenvalue = diagonalMatrix.get(i, i); if (Math.abs(eigenvalue) > 1e-10) { rank++; } } return rank; } }
In this program, we use the Jama library to perform the Schur decomposition and find the eigenvalues of the matrix. The `calculateMatrixRank` method takes a `Matrix` object as input and returns an integer representing the rank of the matrix.
First, we create a `Matrix` object using the data of the matrix we want to find the rank of. Then, we perform the Schur decomposition by calling the `eig()` method of the `Matrix` class, which returns an `EigenvalueDecomposition` object.
Next, we extract the diagonal matrix from the decomposition using the `getD()` method. The diagonal matrix contains the eigenvalues of the original matrix.
Finally, we iterate over the diagonal matrix and count the number of non-zero eigenvalues. Any eigenvalue with an absolute value greater than a small threshold (in this case, `1e-10`) is considered non-zero, and we increment the rank accordingly.
Note: Make sure you have the Jama library added to your project dependencies in order to run this program. You can download the Jama library from the official website or use a build management tool like Maven or Gradle to handle the dependencies automatically