Finding the matrix rank using SVD.
Here’s an example Java program that finds the rank of a matrix using Singular Value Decomposition (SVD):
import Jama.Matrix; import Jama.SingularValueDecomposition; public class MatrixRankFinder { public static int findMatrixRank(double[][] matrixData) { Matrix matrix = new Matrix(matrixData); SingularValueDecomposition svd = matrix.svd(); double[] singularValues = svd.getSingularValues(); int rank = 0; double threshold = Math.max(matrix.getRowDimension(), matrix.getColumnDimension()) * singularValues[0] * Math.ulp(1.0); for (double singularValue : singularValues) { if (singularValue > threshold) { rank++; } } return rank; } public static void main(String[] args) { double[][] matrixData = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0} }; int rank = findMatrixRank(matrixData); System.out.println("Matrix Rank: " + rank); } }
In this program, we use the Jama library, which provides classes for performing matrix operations. We create a `Matrix` object from the input matrix data and then compute the Singular Value Decomposition (SVD) using the `svd()` method.
The `getSingularValues()` method returns an array of singular values. We iterate over these singular values and count the number of values that are greater than a threshold. The threshold is calculated based on the maximum dimension of the matrix and the largest singular value.
Finally, we return the rank of the matrix. In the example `main` method, we create a 3×3 matrix and find its rank using the `findMatrixRank` method. The result is then printed to the console.
Make sure to include the Jama library in your project dependencies for this code to compile and run successfully.