Finding the matrix row echelon form using Gaussian elimination
Here’s an example Java code that demonstrates how to find the row echelon form of a matrix using Gaussian elimination:
public class RowEchelonForm { public static void main(String[] args) { double[][] matrix = { {2, 1, -1, 8}, {-3, -1, 2, -11}, {-2, 1, 2, -3} }; int rows = matrix.length; int cols = matrix[0].length; System.out.println("Original Matrix:"); printMatrix(matrix); for (int i = 0; i < rows; i++) { // Find the pivot element int pivotRow = i; double pivot = matrix[pivotRow][i]; for (int j = i + 1; j < rows; j++) { if (Math.abs(matrix[j][i]) > Math.abs(pivot)) { pivotRow = j; pivot = matrix[j][i]; } } // Swap rows if necessary if (pivotRow != i) { double[] temp = matrix[i]; matrix[i] = matrix[pivotRow]; matrix[pivotRow] = temp; } // Perform row operations to eliminate lower triangular elements for (int j = i + 1; j < rows; j++) { double ratio = matrix[j][i] / matrix[i][i]; for (int k = i; k < cols; k++) { matrix[j][k] -= ratio * matrix[i][k]; } } } System.out.println("\nRow Echelon Form:"); printMatrix(matrix); } private static void printMatrix(double[][] matrix) { int rows = matrix.length; int cols = matrix[0].length; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { System.out.printf("%.2f\t", matrix[i][j]); } System.out.println(); } } }
This code takes a 2D array representing a matrix as input. It uses the Gaussian elimination algorithm to transform the matrix into row echelon form. The `printMatrix` method is used to display the original matrix and the row echelon form.
No comments yet! You be the first to comment.