Finding the singular value decomposition of a matrix.
Here’s an example of a Java program that finds the singular value decomposition (SVD) of a matrix using the Apache Commons Math library:
import org.apache.commons.math3.linear.*; public class SingularValueDecompositionExample { public static void main(String[] args) { // Define the input matrix RealMatrix matrix = MatrixUtils.createRealMatrix(new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }); // Perform singular value decomposition SingularValueDecomposition svd = new SingularValueDecomposition(matrix); // Get the decomposed matrices RealMatrix U = svd.getU(); RealMatrix S = svd.getS(); RealMatrix V = svd.getV(); // Print the decomposed matrices System.out.println("U matrix:"); printMatrix(U); System.out.println("S matrix:"); printMatrix(S); System.out.println("V matrix:"); printMatrix(V); } private static void printMatrix(RealMatrix matrix) { double[][] data = matrix.getData(); for (double[] row : data) { for (double value : row) { System.out.print(value + "\t"); } System.out.println(); } System.out.println(); } }
Make sure you have the Apache Commons Math library added to your project’s dependencies to use the `SingularValueDecomposition` class. You can find the library at https://commons.apache.org/proper/commons-math/.
In this example, we define a 3×3 input matrix and then perform the singular value decomposition using the `SingularValueDecomposition` class. The resulting U, S, and V matrices are then printed to the console using the `printMatrix` helper method.
Remember to replace the input matrix with your desired matrix dimensions and values when using the program.
No comments yet! You be the first to comment.