Finding the singular value decomposition of a rectangular matrix
Here’s an example of a Java problem that demonstrates how to find the singular value decomposition (SVD) of a rectangular matrix using the Apache Commons Math library:
import org.apache.commons.math3.linear.*; public class SVDExample { public static void main(String[] args) { // Create a sample rectangular matrix double[][] matrixData = { {1, 2, 3}, {4, 5, 6} }; // Create a RealMatrix object from the matrix data RealMatrix matrix = MatrixUtils.createRealMatrix(matrixData); // Perform Singular Value Decomposition SingularValueDecomposition svd = new SingularValueDecomposition(matrix); // Get the matrices from the SVD RealMatrix uMatrix = svd.getU(); RealMatrix sMatrix = svd.getS(); RealMatrix vMatrix = svd.getV(); // Print the matrices System.out.println("U matrix:"); System.out.println(uMatrix); System.out.println("S matrix:"); System.out.println(sMatrix); System.out.println("V matrix:"); System.out.println(vMatrix); } }
In this example, we create a rectangular matrix with dimensions 2×3 and find its singular value decomposition using the `SingularValueDecomposition` class from the Apache Commons Math library. The resulting U, S, and V matrices are then printed.
Make sure to have the Apache Commons Math library added to your project’s dependencies in order to run this code successfully.
No comments yet! You be the first to comment.